
Fast Resampling Using Vector QuantizationPatrick C. Teo� and Chase D. Gar�nkley�Department of Computer ScienceStanford University, Stanford, CA 94305ySilicon Graphics Computer SystemsMountain View, CA 94043Abstract. We present a fast resampling scheme using vector quantiza-tion. Our method di�ers from prior work applying vector quantizationto speeding up image and volume processing in two essential aspects.First, our method uses blocks with overlapping rather than disjoint ex-tents. Second, we present a means of trading o� smaller block sizes foradditional computation. These two innovations allow vector quantizationto be used in performing a broader class of operations. We demonstratethe performance of our method in warping both images and volumes,and have also implemented a ray-traced volume renderer utilizing thistechnique. Experiments demonstrate a speed up of 2-3 times over con-ventional resampling with minimal errors.1 IntroductionResampling, the process of extracting values from gridded data, is a ubiquitousoperation in image processing and computer graphics. Most applications whichuse data in the form of a stored image or volume must perform this operationmany times, and computation time is often dominated by this cost. Such ap-plications include many types of image and volume warping, �ltering, texturemapping and volume rendering. In general, the locations at which data is tobe sampled may be non-integral, or subpixel. Because there is no explicit rep-resentation of the data at these locations, resampling consists of interpolatingthe data at nearby grid points. The set of weights used to combine these pointsis known as the resampling kernel. Performing a single resampling operationconsists of the following steps:1. Load from memory all data which contribute to the computation of theinterpolated value. For example, linear interpolation requires the nearestfour samples in an image and eight in a volume.2. Compute the weights for each of the samples. These weights are often thecartesian product of one-dimensional �lters in each dimension of the data.For a linear interpolant, these functions are simple linear ramps3. Multiply each sample value by the corresponding weight and sum to computethe interpolated value.We can see that there are two fundamental costs in resampling: memoryaccesses to retrieve stored data, and 
oating-point operations to interpolate from



these samples. In conventional resampling, these costs are proportional to thesize of the resampling kernel. In this paper, we present a method based on VectorQuantization (VQ) which allows the resampling operation to be performed withfewer memory access and no run-time computation of the weights. The restof the paper is organized as follows. In section 2, we present background onVQ and prior work using VQ in conjunction with image and volume processingoperations. In section 3, we describe our technique for fast resampling. Section 4gives the results of using our method in several applications. Finally, we concludein section 5 with suggestions for extensions and future applications.2 BackgroundVector Quantization. Vector Quantization is a lossy data compression scheme,which can be understood as a generalization of scalar quantization. In scalarquantization, a range of possible values is mapped onto a smaller discrete setof representative values. This mapping operation might consist of an operationsuch as \rounding to the nearest multiple of four". In general, no restrictionneeds to be placed on the possible set of quantized values; they may be unevenlyspaced, or even be non-integers. When this set is explicitly enumerated, it iscommonly referred to as a codebook and its elements are called codewords. Theprocess of choosing the codewords of a codebook is known as codebook design.Once the codebook has been designed, each input value is mapped to one of thecodewords via some encoding rule (typically, the nearest neighbor rule).Unlike scalar quantization, vector quantization quantizes sets of numbers (orvectors) as a group, rather than each value individually.As in scalar quantization,VQ codebook design involves producing a set of vectors which can be used torepresent some collection of input vectors with the minimum possible error, ordistortion. Various metrics can be used to measure distortion; squared error isthe most common, and we have used it in this work. To design codebooks, wehave used the pairwise nearest neighbor (PNN) algorithm[4], which operates bygrouping the input vectors into clusters, and then choosing one representativevector for each cluster.Codebook Design. The PNN algorithm works by �rst organizing the set of inputvectors into a k-d tree[1], a data structure which spatially partitions data alongaxis-aligned planes to form a balanced binary tree. We form the tree by recur-sively subdividing the data until each leaf of the tree contains fewer than some�xed number of vectors. We choose the axis along which to subdivide each nodeto be the one in which the vectors have the maximum variance. We then choosethe median location of the vectors along this axis as the plane with which tosubdivide the node.Once we have constructed the initial tree, the clustering proceeds as follows.We �rst consider each vector to be a cluster of size one, and then repeat thefollowing process until the total number of clusters is reduced to the desirednumber of codewords.1. Select from each leaf of the k-d tree a candidate pair of clusters such thatcombining them, and representing the aggregate by its centroid, will yieldthe smallest distortion over all pairs in that node.



2. For a �xed percentile of the candidate pairs, ranked by distortion, combinethe clusters.3. Rebalance the k-d tree.Once the number of clusters is reduced to the number of desired codewords,the centroids of the remaining clusters are used as the codewords of the codebook.Algorithms that generate optimal codebooks are computationally expensive[5].As a result, codebooks are commonly designed for use across a large numberof data sets. This avoids the need to design a new codebook for each data set.While the PNN method is not guaranteed to generate the optimal codebookfor a given set of input vectors, it generates good codebooks in practice, and issu�ciently fast that we are able to compute a new codebook for each data set.Prior Work. A number of authors have previously explored the use of VQ to ac-celerate image or volume processing operations. The general technique has beento encode the data, perform the desired operation on the vectors of the code-book, and then use this processed codebook in the decoding stage. For example,in [2] and [3], the authors describe performing histogram equalization on VQencoded images. In the case of global equalization, each codeword is equalizedusing a histogram for each image. Adaptive equalization is achieved by comput-ing a number of versions of each codeword, each equalized for a di�erent regionof the image, and interpolating between these copies during decoding. Anotherinteresting example is the use of VQ in volume rendering, presented in [6]. Theauthor presents an orthographic ray-tracing volume renderer which operates intwo stages. First, each codeword is individually rendered into a pixmap usingconventional volume ray-tracing. The rendering of the entire volume is then pro-duced by stepping from block to block within the volume along the projectiondirection and compositing the pixmaps for the codewords encountered.Our method di�ers from prior work in two essential aspects. First, in priorwork the vectors have encoded non-overlapping blocks in the input data. In thiswork, however, we allow the blocks to overlap. This makes a larger class of oper-ations amenable to such a VQ approach. In our particular application, overlap-ping blocks are necessary to guarantee that all the data required to interpolate asample is contained in a single block. Second, we present a means of trading o�smaller block sizes for additional computation. Typically, the size of the blockis determined by the spatial extent of the input region of the operation. Hence,when the input region is large, the size of the block may become prohibitivelylarge for such a VQ scheme. By decomposing the operation appropriately, wecan use smaller blocks at the cost of a moderate increase in computation.3 Methods3.1 PreprocessingOur method involves three preprocessing steps: (1) designing the VQ codebook,(2) computing the extended codebook, and (3) encoding the input data. Duringcodebook design, the input data is decomposed into overlapping blocks, each ofwhich is usually the size of the resampling kernel. For example, when resamplingimage data with a bilinear interpolant, a 2 � 2 block is used (as shown in Fig-ure 1). The use of overlapping blocks is a crucial di�erence from standard VQ



Fig. 1. Decomposition into overlapping blocks of an image which is to be re-sampled using a bilinear interpolant. Filled circles denote locations of imagepixels. Resampling of the image at any location within the shaded region willbe computed from the extended VQ codebook entry of the enclosing block (seeSection 3.2.methods. If the input data were encoded as disjoint blocks, the computation of anew sample value might require samples which reside in several di�erent blocks.By using overlapping blocks, we can guarantee that all the data necessary tocompute a sample will reside in a single block.A small set of representatives is then derived from the blocked data to formthe initial VQ codebook (as described in Section 2). Next, the extended codebookis generated by resampling each codeword in the initial VQ codebook at some�nite number of subpixel locations. Lastly, each overlapping block in the inputdata is encoded with the index of its best representative from the codebook.The extended VQ codebook contains the same number of entries as the origi-nal VQ codebook. However, unlike the entries in the original codebook which areblocks of values from the original data, each entry in the extended codebook is asmall table of resampled values computed at a �xed number of subpixel locationswithin the block. Hence, we can index these resampled values by the concate-nation of the original codebook index and an index designating the discretizedsubpixel location.When resampling image data with a bilinear interpolant, for example, eachentry in the original codebook is a 2 � 2 block of pixel values. If the subpixeldisplacements are discretized onto a 4� 4 grid, then each entry of the extendedcodebook is made up of 16 values computed by resampling the correspondingblock in the original codebook at each subpixel location on the grid. Typically,codebooks of 256 entries are used for 8-bit gray-level images. As a result, theindex into this extended codebook would be 12 bits wide, consisting of 8 bitsfor the original codebook index and 4 bits to encode the discrete subpixel loca-tion. Figure 2 shows a typical entry in an original VQ codebook along with itscorresponding extended VQ codebook entry.3.2 Resampling using the Extended VQ CodebookAfter preprocessing, the input data can be e�ciently resampled such that onlytwo memory accesses are required, one to the encoded data, and one to thecodebook. First, the integral grid location is computed and the codebook index



84

44 68

52

8452 60 68 76 59 56 62 68684452

44 68

52 84

84Fig. 2. Original and extended VQ codebook entries for image resampling usinga bilinear interpolant. (a) One entry in the original VQ codebook. This entrycorresponds to a 2 � 2 block of image pixels. (b) Corresponding entry in theextended VQ codebook. This entry contains a 4� 4 table of image pixel valuesresampled at the corresponding subpixel locations.for this location is retrieved from the encoded input data. For example, if wewant to draw a sample at location (53:3; 28:7) in an image, we would retrieve thecodebook entry whose index is stored at location (53; 28). Second, the fractionaldisplacement of the new location from this grid point is used to retrieve theprecomputed, resampled value from the codebook. If we have resampled thecodebook on a 4� 4 grid, we would quantize the o�set in our example to (14 ; 34 ),and so retrieve the value at position [1; 3] within the codeword.In comparison to these two memory accesses, bilinear interpolation of scalarimage data requires four memory accesses and three linear interpolations. Tri-linear interpolation of scalar volume data requires eight memory accesses andseven linear interpolations.3.3 Trading o� block size for computation.Using the method described so far, interpolants with larger kernels require largerblock sizes. For example, a bicubic interpolant for images would require blocksthat are 4� 4 pixels wide and a tricubic interpolant for volumes would requireblocks that are 4� 4� 4 in size. In order to keep the average quantization errorlow, larger block sizes must be accompanied by larger codebooks. Unfortunately,VQ becomes unmanageable as codebooks become too large. On the other hand,if the codebook size is kept �xed, the average quantization error introducedincreases with the use of larger blocks.Our solution is to adopt a hybrid method in which smaller block sizes aretraded o� for additional computation. For interpolations that can be decom-posed into a sequence of operations with smaller supports, the size of each blockonly needs to be the size of these smaller support regions. For example, whenresampling an image with a bicubic interpolant, a 4 � 1 pixel block could beused. Resampling now requires looking up the codebook entries associated withfour contiguous blocks and combining them using a one-dimensional cubic inter-



polant. Section 4 shows that despite the added computation, the hybrid methodstill outperforms the conventional method by more than a factor of two.4 Results4.1 PerformanceWe assess the improvement a�orded by our algorithm in resampling image andvolume data. For each of these data sets, we compare the performance of ourmethod against conventional resampling when used with linear and cubic inter-polants. Performance is measured by the time required to warp and resample theentire data set, including the time required to compute the new sample locations.We also compute the mean squared error between the results generated by ourmethod and by conventional resampling. Implementations of both our methodand the conventional method were optimized for speed. All running times re-ported are for an implementation on a Sun Microsystems Sparc10 workstationwith 32 Mb of main memory.Image Resampling. Figure 3 shows two versions of a 512� 512, 8-bit gray-levelimage, resampled using a bilinear interpolant. The image on the left was resam-pled using the conventional method while the image on the right was resampledwith our method. The codebook contained 512 entries, and subpixel locationswere discretized onto an 8� 8 grid, yielding a 32Kb extended codebook.Table 1 reports the average times taken by our method and the conventionalmethod to rotate the image over a range of 2� radians in 256 uniform steps,using both bilinear and bicubic interpolants. Note that the last four rows of thetable report results for the hybrid method.Volume Resampling. Table 2 reports the times taken by our method and theconventional method to perform an a�ne warp on a 200 � 200 � 200, 8-bitvolume, using trilinear interpolation. Note again that the last two rows of thetable report results using the hybrid method.4.2 Application (Volume Rendering)Figure 4 shows ray-traced volume renderings of a 200� 200� 200, 8-bit volumedata set. Trilinear interpolation was used to resample the volume. The imageBlock Size Codebook Size VQ Resampling (sec) Conventional (sec) MSEBilinear 2� 2 256 0.62 1.45 7.30Bilinear 2� 2 512 0.63 1.45 5.37Bicubic 4� 4 2048 0.72 2.48 18.01Bicubic 4� 4 4096 0.73 2.48 14.65Bicubic 4� 2 512 0.89 2.48 17.32Bicubic 4� 2 1024 0.95 2.48 14.42Bicubic 4� 1 256 1.00 2.48 8.14Bicubic 4� 1 512 1.01 2.48 5.57Table 1. Times required to resample a 512� 512 image of 8-bit data and theirassociated mean squared errors (MSE).



Block Size Codebook Size VQ Resampling (sec) Conventional (sec) MSETrilinear 2� 2� 2 1024 35 76 6.75Trilinear 2� 2� 2 2048 35 76 5.13Trilinear 2� 2� 1 256 41 76 4.04Trilinear 2� 2� 1 512 41 76 2.66Table 2. Times required to resample a 200�200�200 volume of 8-bit data andtheir associated mean squared errors (MSE).on the left was rendered using the conventional resampling method. The imageon the right was rendered using our method with a codebook size of 2048 and ablock size of 2�2�2. In rendering the image on the right, the codebook was usedto precompute gradients needed to shade the volume. The image rendered usingthe conventional resampling method took 200 seconds while the image renderedusing our method took 94 seconds on a 150 MHz Silicon Graphics Indigo2 with64 Mb of main memory.5 ConclusionsWe have presented a fast resampling scheme using vector quantization. Ourmethod di�ers from prior work in two essential aspects. First, our method usesblocks with overlapping extents. Second, we present a means of trading o�smaller block sizes for additional computation. Experiments using our methodto resample images and volumes demonstrate a speed up of 2-3 times over con-ventional resampling with only small errors. In general, the use of overlappingblocks allows vector quantization to be applied in image/volume processing ap-plications where disjoint blocks do not provide su�cient information. Our fastresampling method can also be used on non-rectangular grids.References1. J. L. Bentley and J. H. Friedman. Data structures for range searching. ACM Com-puting Surveys, 11(4):397{409, December 1979.2. P. Cosman, K. Oehler, E. Riskin, and R. Gray. Combined vector quantization andadaptive histogram equalization. In SPIE Proc. Medical Imaging VI, 1992.3. P. Cosman, K. Oehler, E. Riskin, and R. Gray. Combining vector quantization andhistogram equalization. Information Processing Management, 28(6):681{686, 1992.4. W. Equitz. A new vector quantization clustering algorithm. IEEE Trans. on Acous-tics, Speech and Signal Processing, 37(10):1568{1575, 1989.5. Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. IEEETrans. on Communications, 28:84{95, 1980.6. P. Ning. Applications of data compression to 3-d scalar �eld visualization. Technicalreport, Stanford University, 1993. PhD Dissertation.



Fig. 3. Both images are bilinearly resampled versions of the original 512� 512,8-bit gray-level image. The image on the left was resampled using the conven-tional method while the image on the right was resampled using our method.



Fig. 4. Both images are ray-traced volume renderings of a 200�200�200, 8-bitvolume data set. Trilinear interpolation was used to resample the volume. Theimage on the left was rendered using the conventional resampling method. Theimage on the right was rendered using our method with a codebook size of 2048and a block size of 2� 2� 2.


