Fast Resampling Using Vector Quantization

Patrick C. Teo* and Chase D. Garfinkle!

*Department of Computer Science
Stanford University, Stanford, CA 94305
tSilicon Graphics Computer Systems
Mountain View, CA 94043

Abstract. We present a fast resampling scheme using vector quantiza-
tion. Our method differs from prior work applying vector quantization
to speeding up image and volume processing in two essential aspects.
First, our method uses blocks with overlapping rather than disjoint ex-
tents. Second, we present a means of trading off smaller block sizes for
additional computation. These two innovations allow vector quantization
to be used in performing a broader class of operations. We demonstrate
the performance of our method in warping both images and volumes,
and have also implemented a ray-traced volume renderer utilizing this
technique. Experiments demonstrate a speed up of 2-3 times over con-
ventional resampling with minimal errors.

1 Introduction

Resampling, the process of extracting values from gridded data, is a ubiquitous
operation in image processing and computer graphics. Most applications which
use data in the form of a stored image or volume must perform this operation
many times, and computation time is often dominated by this cost. Such ap-
plications include many types of image and volume warping, filtering, texture
mapping and volume rendering. In general, the locations at which data is to
be sampled may be non-integral, or subpixel. Because there is no explicit rep-
resentation of the data at these locations, resampling consists of interpolating
the data at nearby grid points. The set of weights used to combine these points
is known as the resampling kernel. Performing a single resampling operation
consists of the following steps:

1. Load from memory all data which contribute to the computation of the
interpolated value. For example, linear interpolation requires the nearest
four samples in an image and eight in a volume.

2. Compute the weights for each of the samples. These weights are often the
cartesian product of one-dimensional filters in each dimension of the data.
For a linear interpolant, these functions are simple linear ramps

3. Multiply each sample value by the corresponding weight and sum to compute
the interpolated value.

We can see that there are two fundamental costs in resampling: memory
accesses to retrieve stored data, and floating-point operations to interpolate from

these samples. In conventional resampling, these costs are proportional to the
size of the resampling kernel. In this paper, we present a method based on Vector
Quantization (VQ) which allows the resampling operation to be performed with
fewer memory access and no run-time computation of the weights. The rest
of the paper is organized as follows. In section 2, we present background on
VQ and prior work using VQ in conjunction with image and volume processing
operations. In section 3, we describe our technique for fast resampling. Section 4
gives the results of using our method in several applications. Finally, we conclude
in section 5 with suggestions for extensions and future applications.

2 Background

Vector Quantization. Vector Quantization is a lossy data compression scheme,
which can be understood as a generalization of scalar quantization. In scalar
quantization, a range of possible values is mapped onto a smaller discrete set
of representative values. This mapping operation might consist of an operation
such as “rounding to the nearest multiple of four”. In general, no restriction
needs to be placed on the possible set of quantized values; they may be unevenly
spaced, or even be non-integers. When this set is explicitly enumerated, it is
commonly referred to as a codebook and its elements are called codewords. The
process of choosing the codewords of a codebook is known as codebook design.
Once the codebook has been designed, each input value is mapped to one of the
codewords via some encoding rule (typically, the nearest neighbor rule).

Unlike scalar quantization, vector quantization quantizes sets of numbers (or

vectors) as a group, rather than each value individually. As in scalar quantization,
VQ codebook design involves producing a set of vectors which can be used to
represent some collection of input vectors with the minimum possible error, or
distortion. Various metrics can be used to measure distortion; squared error is
the most common, and we have used 1t in this work. To design codebooks, we
have used the pairwise nearest neighbor (PNN) algorithm[4], which operates by
grouping the input vectors into clusters, and then choosing one representative
vector for each cluster.
Codebook Design. The PNN algorithm works by first organizing the set of input
vectors into a k-d tree[l], a data structure which spatially partitions data along
axis-aligned planes to form a balanced binary tree. We form the tree by recur-
sively subdividing the data until each leaf of the tree contains fewer than some
fixed number of vectors. We choose the axis along which to subdivide each node
to be the one in which the vectors have the maximum variance. We then choose
the median location of the vectors along this axis as the plane with which to
subdivide the node.

Once we have constructed the initial tree, the clustering proceeds as follows.
We first consider each vector to be a cluster of size one, and then repeat the
following process until the total number of clusters is reduced to the desired
number of codewords.

1. Select from each leaf of the k-d tree a candidate pair of clusters such that
combining them, and representing the aggregate by its centroid, will yield
the smallest distortion over all pairs in that node.

2. For a fixed percentile of the candidate pairs, ranked by distortion, combine
the clusters.

3. Rebalance the k-d tree.

Once the number of clusters is reduced to the number of desired codewords,
the centroids of the remaining clusters are used as the codewords of the codebook.
Algorithms that generate optimal codebooks are computationally expensive[5].
As a result, codebooks are commonly designed for use across a large number
of data sets. This avoids the need to design a new codebook for each data set.
While the PNN method is not guaranteed to generate the optimal codebook
for a given set of input vectors, it generates good codebooks in practice, and is
sufficiently fast that we are able to compute a new codebook for each data set.

Prior Work. A number of authors have previously explored the use of VQ to ac-
celerate image or volume processing operations. The general technique has been
to encode the data, perform the desired operation on the vectors of the code-
book, and then use this processed codebook in the decoding stage. For example,
in [2] and [3], the authors describe performing histogram equalization on VQ
encoded images. In the case of global equalization, each codeword is equalized
using a histogram for each 1image. Adaptive equalization is achieved by comput-
ing a number of versions of each codeword, each equalized for a different region
of the image, and interpolating between these copies during decoding. Another
interesting example is the use of VQ in volume rendering, presented in [6]. The
author presents an orthographic ray-tracing volume renderer which operates in
two stages. First, each codeword is individually rendered into a pixmap using
conventional volume ray-tracing. The rendering of the entire volume is then pro-
duced by stepping from block to block within the volume along the projection
direction and compositing the pixmaps for the codewords encountered.

Our method differs from prior work in two essential aspects. First, in prior
work the vectors have encoded non-overlapping blocks in the input data. In this
work, however, we allow the blocks to overlap. This makes a larger class of oper-
ations amenable to such a VQ approach. In our particular application, overlap-
ping blocks are necessary to guarantee that all the data required to interpolate a
sample is contained in a single block. Second, we present a means of trading off
smaller block sizes for additional computation. Typically, the size of the block
is determined by the spatial extent of the input region of the operation. Hence,
when the input region is large, the size of the block may become prohibitively
large for such a VQ scheme. By decomposing the operation appropriately, we
can use smaller blocks at the cost of a moderate increase in computation.

3 Methods

3.1 Preprocessing

Our method involves three preprocessing steps: (1) designing the VQ codebook,
(2) computing the extended codebook, and (3) encoding the input data. During
codebook design, the input data is decomposed into overlapping blocks, each of
which is usually the size of the resampling kernel. For example, when resampling
image data with a bilinear interpolant, a 2 x 2 block is used (as shown in Fig-
ure 1). The use of overlapping blocks is a crucial difference from standard VQ

Fig. 1. Decomposition into overlapping blocks of an image which is to be re-
sampled using a bilinear interpolant. Filled circles denote locations of image
pixels. Resampling of the image at any location within the shaded region will
be computed from the extended VQ codebook entry of the enclosing block (see
Section 3.2.

methods. If the input data were encoded as disjoint blocks, the computation of a
new sample value might require samples which reside in several different blocks.
By using overlapping blocks, we can guarantee that all the data necessary to
compute a sample will reside in a single block.

A small set of representatives is then derived from the blocked data to form
the initial VQ codebook (as described in Section 2). Next, the extended codebook
is generated by resampling each codeword in the initial VQ codebook at some
finite number of subpixel locations. Lastly, each overlapping block in the input
data is encoded with the index of its best representative from the codebook.

The extended VQ codebook contains the same number of entries as the origi-
nal VQ codebook. However, unlike the entries in the original codebook which are
blocks of values from the original data, each entry in the extended codebook is a
small table of resampled values computed at a fixed number of subpixel locations
within the block. Hence, we can index these resampled values by the concate-
nation of the original codebook index and an index designating the discretized
subpixel location.

When resampling image data with a bilinear interpolant, for example, each
entry in the original codebook 1s a 2 x 2 block of pixel values. If the subpixel
displacements are discretized onto a 4 x 4 grid, then each entry of the extended
codebook is made up of 16 values computed by resampling the corresponding
block in the original codebook at each subpixel location on the grid. Typically,
codebooks of 256 entries are used for 8-bit gray-level images. As a result, the
index into this extended codebook would be 12 bits wide, consisting of 8 bits
for the original codebook index and 4 bits to encode the discrete subpixel loca-
tion. Figure 2 shows a typical entry in an original VQ codebook along with its
corresponding extended VQ codebook entry.

3.2 Resampling using the Extended VQ Codebook
After preprocessing, the input data can be efficiently resampled such that only

two memory accesses are required, one to the encoded data, and one to the
codebook. First, the integral grid location is computed and the codebook index

52 84 52 84

Iy
44 68 44 68
52|84(44|68| - [52[60]68[76|84 56 62|68

Fig. 2. Original and extended VQ codebook entries for image resampling using
a bilinear interpolant. (a) One entry in the original VQ codebook. This entry
corresponds to a 2 x 2 block of image pixels. (b) Corresponding entry in the
extended VQ codebook. This entry contains a 4 x 4 table of image pixel values
resampled at the corresponding subpixel locations.

for this location is retrieved from the encoded input data. For example, if we
want to draw a sample at location (53.3,28.7) in an image, we would retrieve the
codebook entry whose index is stored at location (53, 28). Second, the fractional
displacement of the new location from this grid point is used to retrieve the
precomputed, resampled value from the codebook. If we have resampled the
codebook on a 4 x 4 grid, we would quantize the offset in our example to (%, %),
and so retrieve the value at position [1, 3] within the codeword.

In comparison to these two memory accesses, bilinear interpolation of scalar
image data requires four memory accesses and three linear interpolations. Tri-
linear interpolation of scalar volume data requires eight memory accesses and
seven linear interpolations.

3.3 Trading off block size for computation.

Using the method described so far, interpolants with larger kernels require larger
block sizes. For example, a bicubic interpolant for images would require blocks
that are 4 x 4 pixels wide and a tricubic interpolant for volumes would require
blocks that are 4 x 4 x 4 in size. In order to keep the average quantization error
low, larger block sizes must be accompanied by larger codebooks. Unfortunately,
VQ becomes unmanageable as codebooks become too large. On the other hand,
if the codebook size 1s kept fixed, the average quantization error introduced
increases with the use of larger blocks.

Our solution is to adopt a hybrid method in which smaller block sizes are
traded off for additional computation. For interpolations that can be decom-
posed into a sequence of operations with smaller supports, the size of each block
only needs to be the size of these smaller support regions. For example, when
resampling an image with a bicubic interpolant, a 4 x 1 pixel block could be
used. Resampling now requires looking up the codebook entries associated with
four contiguous blocks and combining them using a one-dimensional cubic inter-

polant. Section 4 shows that despite the added computation, the hybrid method
still outperforms the conventional method by more than a factor of two.

4 Results

4.1 Performance

We assess the improvement afforded by our algorithm in resampling image and
volume data. For each of these data sets, we compare the performance of our
method against conventional resampling when used with linear and cubic inter-
polants. Performance 1s measured by the time required to warp and resample the
entire data set, including the time required to compute the new sample locations.
We also compute the mean squared error between the results generated by our
method and by conventional resampling. Implementations of both our method
and the conventional method were optimized for speed. All running times re-
ported are for an implementation on a Sun Microsystems Sparcl0 workstation
with 32 Mb of main memory.

Image Resampling. Figure 3 shows two versions of a 512 x 512, 8-bit gray-level
image, resampled using a bilinear interpolant. The image on the left was resam-
pled using the conventional method while the image on the right was resampled
with our method. The codebook contained 512 entries, and subpixel locations
were discretized onto an 8 x 8 grid, yielding a 32Kb extended codebook.

Table 1 reports the average times taken by our method and the conventional
method to rotate the image over a range of 27 radians in 256 uniform steps,
using both bilinear and bicubic interpolants. Note that the last four rows of the
table report results for the hybrid method.

Volume Resampling. Table 2 reports the times taken by our method and the
conventional method to perform an affine warp on a 200 x 200 x 200, 8-bit
volume, using trilinear interpolation. Note again that the last two rows of the
table report results using the hybrid method.

4.2 Application (Volume Rendering)

Figure 4 shows ray-traced volume renderings of a 200 x 200 x 200, 8-bit volume
data set. Trilinear interpolation was used to resample the volume. The image

Block Size|Codebook Size|VQ Resampling (sec)|Conventional (sec)|MSE
Bilinear| 2 x 2 256 0.62 1.45 7.30
Bilinear| 2 x 2 512 0.63 1.45 5.37
Bicubic| 4 x4 2048 0.72 2.48 18.01
Bicubic| 4 x4 4096 0.73 2.48 14.65
Bicubic| 4 x 2 512 0.89 2.48 17.32
Bicubic| 4 x 2 1024 0.95 2.48 14.42
Bicubic| 4x1 256 1.00 2.48 8.14
Bicubic| 4x1 512 1.01 2.48 5.57

Table 1. Times required to resample a 512 x 512 image of 8-bit data and their
associated mean squared errors (MSE).

Block Size|Codebook Size|VQ Resampling (sec)|Conventional (sec)|MSE
Trilinear| 2 x 2 x 2 1024 35 76 6.75
Trilinear| 2 x 2 x 2 2048 35 76 5.13
Trilinear| 2 x 2 x 1 256 41 76 4.04
Trilinear| 2 x 2 x 1 512 41 76 2.66

Table 2. Times required to resample a 200 x 200 x 200 volume of 8-bit data and
their associated mean squared errors (MSE).

on the left was rendered using the conventional resampling method. The image
on the right was rendered using our method with a codebook size of 2048 and a
block size of 2 x 2 x 2. In rendering the image on the right, the codebook was used
to precompute gradients needed to shade the volume. The image rendered using
the conventional resampling method took 200 seconds while the image rendered
using our method took 94 seconds on a 150 MHz Silicon Graphics Indigo2 with
64 Mb of main memory.

5 Conclusions

We have presented a fast resampling scheme using vector quantization. Our
method differs from prior work in two essential aspects. First, our method uses
blocks with overlapping extents. Second, we present a means of trading off
smaller block sizes for additional computation. Experiments using our method
to resample images and volumes demonstrate a speed up of 2-3 times over con-
ventional resampling with only small errors. In general, the use of overlapping
blocks allows vector quantization to be applied in image/volume processing ap-
plications where disjoint blocks do not provide sufficient information. Our fast
resampling method can also be used on non-rectangular grids.

References

1. J. L. Bentley and J. H. Friedman. Data structures for range searching. ACM Com-
puting Surveys, 11(4):397-409, December 1979.

2. P. Cosman, K. Ochler, E. Riskin, and R. Gray. Combined vector quantization and
adaptive histogram equalization. In SPIF Proc. Medical Imaging VI, 1992.

3. P. Cosman, K. Oehler, E. Riskin, and R. Gray. Combining vector quantization and
histogram equalization. Information Processing Management, 28(6):681-686, 1992.

4. W. Equitz. A new vector quantization clustering algorithm. /EFE Trans. on Acous-
tics, Speech and Signal Processing, 37(10):1568-1575, 1989.

5. Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. [FEF
Trans. on Communications, 28:84-95, 1980.

6. P. Ning. Applications of data compression to 3-d scalar field visualization. Technical
report, Stanford University, 1993. PhD Dissertation.

Fig. 3. Both images are bilinearly resampled versions of the original 512 x 512,
8-bit gray-level image. The image on the left was resampled using the conven-
tional method while the image on the right was resampled using our method.

Fig. 4. Both images are ray-traced volume renderings of a 200 x 200 x 200, 8-bit
volume data set. Trilinear interpolation was used to resample the volume. The
image on the left was rendered using the conventional resampling method. The
image on the right was rendered using our method with a codebook size of 2048
and a block size of 2 x 2 x 2.

